(3x^2+2y^2)dx(4xy+6y^2)dy=0

Simple and best practice solution for (3x^2+2y^2)dx(4xy+6y^2)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+2y^2)dx(4xy+6y^2)dy=0 equation:


Simplifying
(3x2 + 2y2) * dx(4xy + 6y2) * dy = 0

Reorder the terms for easier multiplication:
dx * dy(3x2 + 2y2)(4xy + 6y2) = 0

Multiply dx * dy
d2xy(3x2 + 2y2)(4xy + 6y2) = 0

Multiply (3x2 + 2y2) * (4xy + 6y2)
d2xy(3x2 * (4xy + 6y2) + 2y2 * (4xy + 6y2)) = 0
d2xy((4xy * 3x2 + 6y2 * 3x2) + 2y2 * (4xy + 6y2)) = 0

Reorder the terms:
d2xy((18x2y2 + 12x3y) + 2y2 * (4xy + 6y2)) = 0
d2xy((18x2y2 + 12x3y) + 2y2 * (4xy + 6y2)) = 0
d2xy(18x2y2 + 12x3y + (4xy * 2y2 + 6y2 * 2y2)) = 0
d2xy(18x2y2 + 12x3y + (8xy3 + 12y4)) = 0

Reorder the terms:
d2xy(8xy3 + 18x2y2 + 12x3y + 12y4) = 0
d2xy(8xy3 + 18x2y2 + 12x3y + 12y4) = 0
(8xy3 * d2xy + 18x2y2 * d2xy + 12x3y * d2xy + 12y4 * d2xy) = 0

Reorder the terms:
(12d2xy5 + 8d2x2y4 + 18d2x3y3 + 12d2x4y2) = 0
(12d2xy5 + 8d2x2y4 + 18d2x3y3 + 12d2x4y2) = 0

Solving
12d2xy5 + 8d2x2y4 + 18d2x3y3 + 12d2x4y2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), '2d2xy2'.
2d2xy2(6y3 + 4xy2 + 9x2y + 6x3) = 0

Ignore the factor 2.

Subproblem 1

Set the factor 'd2xy2' equal to zero and attempt to solve: Simplifying d2xy2 = 0 Solving d2xy2 = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d2xy2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Subproblem 2

Set the factor '(6y3 + 4xy2 + 9x2y + 6x3)' equal to zero and attempt to solve: Simplifying 6y3 + 4xy2 + 9x2y + 6x3 = 0 Reorder the terms: 4xy2 + 9x2y + 6x3 + 6y3 = 0 Solving 4xy2 + 9x2y + 6x3 + 6y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '-4xy2' to each side of the equation. 4xy2 + 9x2y + 6x3 + -4xy2 + 6y3 = 0 + -4xy2 Reorder the terms: 4xy2 + -4xy2 + 9x2y + 6x3 + 6y3 = 0 + -4xy2 Combine like terms: 4xy2 + -4xy2 = 0 0 + 9x2y + 6x3 + 6y3 = 0 + -4xy2 9x2y + 6x3 + 6y3 = 0 + -4xy2 Remove the zero: 9x2y + 6x3 + 6y3 = -4xy2 Add '-9x2y' to each side of the equation. 9x2y + 6x3 + -9x2y + 6y3 = -4xy2 + -9x2y Reorder the terms: 9x2y + -9x2y + 6x3 + 6y3 = -4xy2 + -9x2y Combine like terms: 9x2y + -9x2y = 0 0 + 6x3 + 6y3 = -4xy2 + -9x2y 6x3 + 6y3 = -4xy2 + -9x2y Add '-6x3' to each side of the equation. 6x3 + -6x3 + 6y3 = -4xy2 + -9x2y + -6x3 Combine like terms: 6x3 + -6x3 = 0 0 + 6y3 = -4xy2 + -9x2y + -6x3 6y3 = -4xy2 + -9x2y + -6x3 Add '-6y3' to each side of the equation. 6y3 + -6y3 = -4xy2 + -9x2y + -6x3 + -6y3 Combine like terms: 6y3 + -6y3 = 0 0 = -4xy2 + -9x2y + -6x3 + -6y3 Simplifying 0 = -4xy2 + -9x2y + -6x3 + -6y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| (-1)/2≤(4-3x)/5≤1/4 | | 4(3-u)+u=18 | | 4y^2+7y=0 | | 16-12x=15x-19x+18-12 | | 4-3x=-1 | | y=100(3.5) | | (5z+3)(5-z)=0 | | 12.2z+19.4=2.7z+93.9 | | 4y^2-5y-9=0 | | 5(x+7)=5 | | 4-3x-9=1 | | 3[3v+4]=39 | | 5(2x-6)-4(x+2)=-24 | | 11=b/-5 | | 5(2x-6)-4(x-2)=-24 | | 4x^2-14x-2= | | 9(7+5r)ifr=2 | | 9(7+5r)r=2 | | 9(7+5r)whenr=2 | | 3p-4=-8 | | 2*4x-9=3 | | 4(2x-7)=3(-x+1)-9 | | 2x+5y=-35 | | 125+8x^3=0 | | 6z+4=z-3 | | -4+2x=-18 | | 5z+4=-3 | | -17x-61=-10 | | 44/121 | | 9(y^2)-x^2-4x+18y+4=0 | | x*x+10=5x | | 8v-11=6x-5 |

Equations solver categories